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RIEMANNIAN MANIFOLDS ISOSPECTRAL
ON FUNCTIONS BUT NOT ON 1-FORMS

CAROLYN S. GORDON

Introduction

For (M, g) a compact Riemannian manifold, let spec?’(M, g) denote the
collection of eigenvalues, with multiplicities, of the associated Laplace-Beltrami
operator acting on the space of smooth p-formson M, p =0,1,2,- - -, dim(M).
Two manifolds (M, g) and (M’,g’) will be said to be p-isospectral if
spec?(M, g) = spec?(M’, g’). Note that O-isospectral manifolds are generally
called “isospectral” in the literature. It is well known that spec®( M, g) (i.e. the
spectrum on functions) contains considerable information about the geometry
of (M, g). Other information is known to be contained in the p-spectra for
higher values of p. For example, Patodi [9] showed that spec?’(M, g), p =
0,1,2, together determine whether (M, g) has constant scalar curvature,
whether it is Einstein, and whether it has constant sectional curvature. It
would be of interest to determine whether for each &, the collection of all
spec?(M, g), p = 0,:--, k, contains more information than does spec? (M, g),
p=0,---,k — 1. The purpose of this article is to give an affirmative answer
when k = 1, i.e., we give examples of manifolds which are 0-isospectral but not
1-isospectral.

The manifolds in our examples are Riemannian Heisenberg manifolds, i.e.,
compact quotients I' \ H” of the (2n + 1)-dimensional Heisenberg group, with
metrics g induced by left-invariant metrics on H,. In [5], we gave sufficient
conditions for two Riemannian Heisenberg manifolds to be 0-isospectral and
constructed many examples. We will see that some of these examples are
p-isospectral for all p while others are not l-isospectral. We give evidence
suggesting that these are the only two possibilities, i.e. that once the manifolds
in these examples are l-isospectral, they are also p-isospectral for all p. We
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also attempt to distinguish geometrically those examples which are only
0-isospectral from those which are also 1-isospectral.

The paper is organized as follows: In §1, we discuss one method (needed
later) for proving that two manifolds are p-isospectral for all p. We also make
a few side remarks concerning Vignéras® examples [11] of 0-isospectral mani-
folds which are not isometric. §2 reviews the necessary facts about Riemannian
Heisenberg manifolds, establishes the notation used throughout the paper, and
gives a few preliminary results. In §§3-5, we compare the spectra of Rieman-
nian Heisenberg manifolds (T'\ H,, g) and (I''\ H,, g) under the hypothesis
that I' and I'’ have the same intersection with the center of H,. In Theorem
3.2, we give a necessary and sufficient condition (P0O) for such a pair to be
O-isospectral. (The sufficiency of a slightly stronger condition was proven in
[5]1) In §§4 and 5 we assume (PO) to be satisfied and give additional sufficient
conditions (P1) for the manifolds to be 1-isospectral (Theorem 4.3) and (P2)
for them to be p-isospectral for all p (Theorem 5.2). In Theorem 4.4, we see
that under an additional hypothesis—and we conjecture always—(P1) is also
necessary for the manifolds to be 1-isospectral. Proposition 5.4 compares
conditions (P1) and (P2) and, together with Theorem 4.4, motivates our
conjecture that 0- and l-isospectral Heisenberg manifolds must be p-
isospectral for all p. Finally in §6, we restrict our attention to groups I" and I’/
for which the conditions (P0), (P1), and (P2) have a particularly simple form,
enabling us to construct specific examples of 0-isospectral Heisenberg mani-
folds. We consider four such examples and compare their spectra on forms and
also compare their fundamental groups. These examples illustrate that for
0-isospectral Heisenberg manifolds, the questions of whether the manifolds are
1-isospectral and whether their fundamental groups are isomorphic are inde-
pendent.

1. A method for proving manifolds are isospectral

Let G be a simply-connected Lie group, g a left-invariant Riemannian
metric on G, and I' a uniform discrete subgroup of G. (“Uniform” means that
I' \ G is compact.) The metric g induces a Riemannian metric, again denoted
g, on I'\ G so that (G, g) is a Riemannian covering of (I' \ G, g). The space
L*(T' \ G) is identified with

LA T\G) = {fe L} (G): f(yx) =f(x) forallyeT, x € G}.

The Lie algebra g of G may be identified both with the tangent space 7,(G)
(so g defines an inner product on g) and with the space of left-invariant vector
fields on G. Such vector fields may also be viewed as vector fields on I' \ G.
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We view elements of A?(g*) both as left-invariant p-forms on G and also as
forms on I' \ G. The space of square-integrable p-forms is given by

LT\ G) ® A?(g*).

The Laplacian of (I'\ G, g) acting on smooth functions is given by A =
-Yn_, X2, where { X, -+, X, } is an orthonormal basis of g relative to the
inner product defined by g. Let p denote the right action of G on L*(T'\ G),
ie.

p(x)f(y) = f(yx).
Since X, f = df (xexptX;)/dt,_,, the extension of A to L*(T"\ G) is given by

=- _Af.:l (P*(Xi))z-

Note that if ® € Aut(G) and ®*g = g, then {®, X, -+, ®,X,} is another
orthonormal basis of g and hence we also have

M=

A=_

7

4 ((P ° (I))*Xi)z'

Now let I'” be a second uniform discrete subgroup of G. Denote by A’ and o’
the Laplacian of (I''\ G, g) and the right action of G on L*(I'\ G),
respectively.

(1.1) Definition. Let (I'\ G, g) and (I'"\ G, g) be as above, let J# be a
p-invariant subspace of L*(I'\ G), and 5’ a p’-invariant subspace of
LY (I'"\ G). We say & is g-equivalent to 5#’ if there exists ® € Aut(G) such
that g = ®*g and such that p acting on S is equivalent to p’ o ® acting on
H.

(1.2) Theorem. Let (I'\ G, g) and (I''\ G, g) be as above. Suppose 3 is
a p-invariant subspace of L*(U'\G), ##’ is a p-invariant subspace of
L*(T'\ G), and 3 is g-equivalent to #"'. Then the spaces #® AP(g*) and
' ® AP(g*) of p-forms are invariant under the action of the Laplacians A and
A, respectively, and the Laplacians restricted to these subspaces are isospectral.

(1.3) Corollary. Suppose there exist decompositions L*(T'\ G) = ® .,
and LX(T'\ G) = ®__, . into p-invariant (respectively p'-invariant) sub-
spaces such that for each a, S, is g-equivalent to ). Then (I'\ G, g) is
p-isospectral to (I \ G, g) for all p.

Proof. A special case of the theorem and corollary (with the automor-
phisms “almost inner”) is proved in [4]; the additional hypotheses are not
needed in the proof.
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The method of Corollary 1.3 was used in [1] and [4]. Most methods which
have been used to construct 0-isospectral manifolds similarly involve represen-
tation theoretic or algebraic techniques which force the manifolds to be
p-isospectral for all p as well as 0-isospectral. (See Sunada’s examples [10] and
also Gilkey’s proof [2] that Ikeda’s examples [8] of 0-isospectral manifolds are
actually p-isospectral for all p.)

We will see that in the case of various isospectral Heisenberg manifolds
(T\ H,,g) and (I"\ H,, g), the spaces L*(I'\ H,) and L*(T’\ H,) admit
decompositions of the form

L*(T\H,) = Hry ® Hr,
such that Hp, is g-equivalent to 5} ,. However, 5}, need not be g- ‘
equivalent to 1., even though the Laplacians are isospectral on these spaces.
When these spaces are not g-equivalent, the manifolds will in general not be
1-isospectral.

(1.4) Remark. Vignéras [11] used similar methods to construct isospectral
compact hyperbolic manifolds. Let G be a direct product SL(2, R)" X SL(2, C)*.
She constructs pairs of uniform discrete subgroups I' and I'V such that the
right actions of G on L*(I'\ G) and L*(I'”\ G) are equivalent. As she points
out, the manifolds I' \ G/K and I'"\ G/K are then O-isospectral, where K is a
maximal compact subgroup of G and G/K is given the symmetric space
metric. By Corollary 1.3, we see that for any left-invariant Riemannian metric
g on G, the manifolds (I'\ G, g) and (I'"\ G, g) are p-isospectral for all p.

2. Riemannian Heisenberg manifolds

By a Riemannian Heisenberg manifold, we shall mean a manifold of the
form (I'\ H,, g), where H,, is the (2n + 1)-dimensional Heisenberg group (see
(2.1) below), T is a uniform discrete subgroup, and g is a Riemannian metric
whose lift to H,, again denoted g, is left-invariant. The isometry classes of
Riemannian Heisenberg manifolds were classified in [5] by specifying a collec-
tion % of Riemannian Heisenberg manifolds, including at least one from each
isometry class, and specifying a necessary and sufficient condition for two
members of % to be isometric. The particular collection & of representative
manifolds was convenient for the computations carried out in [5]; however the
main results of the present paper can be stated more simply if we use a
different collection 7. We will define 4 below and indicate how to find for
each manifold in  (or &) an isometric manifold in % (or in 7, respec-
tively). This will allow us to translate the results of [5] to the new setting
whenever necessary. We also describe the Ricci tensors of the elements of 7.
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(2.1) The Heisenberg group and Lie algebra. The (27 + 1)-dimensional
Heisenberg group is the subgroup H, = {h(x, y,t): x,y €R", t € R} of
GL(n + 2,R), where

1 x x, t
1 -0 N
h(x,y,t) = ik
0 1y,
1

H, is diffeomorphic to R?>" X R. The factor R = { 4(0,0,¢): ¢t € R} is the
center of H,. Multiplication is given by
(2.2) h(x,y, t)h(x’, y’,t’) = h(x +x,y+yLt+t+x -y’),
~where x - y’ is the standard dot product in R".
The Lie algebra §, of H, has basis
(2.3) w= {Xl,""Xnv Yl"“’Yn’Z}

satisfying [ X;, ¥;] = Z with all other brackets of basis elements equal to zero.
Thus RZ is the center of §,,. If we write

X(x,p,t) =3 (x, X, + yY,) + {Z,
i=1

then b, may be viewed as a matrix algebra with

0O x - x, t

N

X(x,y,t)=
0 Vn

0

As a vector space §, = R?" + RZ. We thus view R?" as a subspace of b,,.
The group exponential satisfies

exp(X(x, y,1)) = h(x, p,t + 3x - y)
with inverse log h(x, y,t) = X(x, y, t = 3x - y).
(2.4) Automorphisms of H,. We will identify each automorphism ® of H,

with the matrix of its differential @, relative to the standard basis & of §,,.
Let

Sp(n,R) = {B € GL(2n,R): BJB = ¢J withe= +1}.
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As discussed in [5], Aut(H, ) is the set of all matrices ® of the form

¢=[aﬁ 0}’
€

w  a?

where a € R*, w € R?”, and § € Sp(n, R).

(2.5) Left-invariant matrices. Each left-invariant Riemannian metric g on
H, is uniquely determined by the associated inner product on the tangent
space at the identity element e. Since 7,(H,) = },, we will identify g with the
‘matrix of this inner product relative to the standard basis #Z of }§,. We will say
g is an %metric if

8o :
2.6 = :
(2.6) g 0
0-.-0 d?

for some positive definite 2n X 2n matrix g, and 4 € R, and g is a Fmetric
if

a4

(2.7) g= a4

1

for some 0 < a; < -+ < a,. In particular every J~metric is an $2metric.

(2.8) Lemma. (i) Two left-invariant metrics g and g’ on the simply-connected
Heisenberg group H, are isometric if and only if g’ = ®*g for some ® € Aut(H,).

(i) Each left-invariant metric on H, is isometric to a unique J-metric.

Proof. (i) is a special case of a result of [6).

(ii) Let g be a left-invariant metric. By Lemma 3.5 of [5], there exists a
g-orthonormal basis { X{,---, X, Y/,---, Y/, Z'} of B,and d; > --- > d
€ R™ such that

(2.9) [ X/, Y] =a?z".
Thus the linear map ¢ on Y, which sends X/ to d,X,, Y/ to d,Y,, and Z’ to Z

it
is the differential of an automorphism ® of H,. The metric ®*g is a J-metric
isometric to g with a; = d; %, 1 < i < n. The uniqueness of the J~metric is an
easy consequence of (i) and the fact that an orthonormal basis for a J~metric

satisfies the bracket relations (2.9) with d, = a; 2.

n
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(2.10) Uniform discrete subgroups. For .# a lattice of maximal rank in R?>"
and forc € Z™, let
I(&,c)={h(x,y,t)eH,:(x,y) €&, t€cl}.
By (2.2), I'(#, ¢) is a subgroup of H,, if and only if
(2.11) x -y’ € cZ, whenever (x,y),(x,y)eZL.
Since H, is diffeomorphic to R*” X R, we have that T'(%,¢) is a uniform
discrete subgroup of H, whenever (2.11) holds. A uniform discrete subgroup T
of H, will be called a J~group if T is of the form I' = I'(.%Z, ¢). We distinguish
a subcollection of Fgroups, called #groups, as follows: For r = (r,---,r,)
€ (Z*)" such that r, divides r, ., 1 < i<n—1,let & =rZ X - - Xr,Z X
Z"and let I, = I'(#,,1). Then a group I is called an Sgroup if I' =T, for
some such r.
(2.12) Example. In §6 we will consider ~groups for which
FL=nL X - Xr,LXsyZX---Xs,Z
for some r,, s, € R*. For such %, condition (2.11) states that I'(%,¢) is a
F=group if and only if r;s;, € dZ, 1 < i < n. We will call I'(Z, ¢) a rectilinear
F-group. One can check that I'(%,c) is conjugate under Aut(H,) to the
Sgroup I, where
F= (”(1)5(1)/0,' Ty r(n)s(n)/c)
(the parentheses around the subscripts indicate that the rs; have been re-
ordered so that r;s.,, < r;.1)Si+1) 1 < i< n—1). By Lemma 2.13 below, it
follows that two rectilinear F~groups I'(.Z, ¢) and I'(#”’, ¢’) are isomorphic as
abstract groups if and only if
1S /¢ = FoiySoqin/€s 1<ign,
for some permutation o on {1, --,n}.

(2.13) Lemma [5, Theorem 2.4). Every uniform discrete subgroup of H, is
conjugate under an automorphism of H, to a unique S-group. Two Fgroups T,
and T',. are isomorphic as abstract groups if and only if r = r’.

Definition. We let & (respectively 7)) be the set of all Riemannian
Heisenberg manifolds (I' \ H,, g) such that g is an $metric (respectively, a
F-metric) and T is an Sgroup (respectively, a F-group).

(2.14) Proposition. Let M = (I,\ H,, g) € % with g given by (2.6). Then
there exists © € Aut(H,) of the form

d1/2
(2.15) ®= “

0---0 e(a)d
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for some a € §5(n,R) (see (2.4)) such that (®(T)\H, (®1)*g) is an
element of I isometric to M. (Here ®(T,) = I'(&£, d) for some £.) Conversely,
if (T\H,,g) €T withT =T(Z,c), then (?"Y(T)\ H,, D*g) is an isometric
element of & for some © of the form (2.15) with d = c.

Proof. For the first statement, Lemma 2.8 guarantees the existence of a
Fmetric g’ and an automorphism @ such that g = ®*g’. In view of (2.4) and
the expressions (2.6) and (2.7) for g and g’, we see that ® is necessarily of the
form (2.15). Trivially ®(T,) is a F~group and the first statement follows. The
second statement is proved similarly using Lemma 2.13.

(2.16) Proposition. Every Riemannian Heisenberg manifold is isometric to an
element of I . Two elements (' \ H,, g) and (I''\ H,, g') of 7 are isometric if
and only if g =g’ and there exists ® € Aut(H,) such that g = ®*g and
I’ = ®(T'). Necessarily ® is of the form (2.15) withd = 1.

Proof. Proposition 2.16 with 7 replaced by & is proved in [5, Theorem
2.7]. Thus the first statement of Proposition 2.16 follows from Proposition
2.14. The proof of the second statement is the same as the proof of the
analogous statement for . in [5] and is based on Lemma 2.8.

(2.17) Notation. Given an element (I' \ H,,, g) of either & or  (note that
in either case I is of the form I'(.%#, ¢) and g of the form (2.6)), we associate to
(I'\ H,, g) the torus

T(ga gO) = (’y\ Rln, gO)’

where the positive-definite matrix g, is viewed as a flat metric on R?".

(2.18) Proposition. If the element ('\H,,g) of I is isometric to
(I',\ H,,8") €%, then the associated tori are isometric.

Proof. By Propositions 2.14 and 2.16, we have g’ = ®*g and I’ = ®(I},)
for some ® of the form (2.15). Denoting the submatrix d'/%a of ® by B, we see
that £= B(%,) and g, ='Bg,B- Hence T(%, g,) is isometric to T(%Z,, g;).

We conclude this section with a description of the Ricci tensors of J-metrics.

(2.19) Notation. (i) Given an & (or, in particular a -) metric g, we denote
by { , ) both the inner product on §, defined by g and the restriction of this
inner product to the subspace R?" of b,. (The latter is just the inner product
defined by g,.) The associated norms will be denoted by || - ||. Define a linear
transformation n of R?" by

(220) [X,Y]=<(X,nY)Z

(Z is given by (2.3).) As shown in [5], 7 is skew-symmetric relative to { , >
with matrix g;UJ relative to the standard basis { X;,-- -, X, ¥},-- -, Y, } of R*".
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In particular if g is a S metric, then n has matrix

-1
__.al

(2.21) n=|ai' -a;'

and n* = —g; %

(il) We denote the Ricci tensor of g by S, and write Ric,(X) = S,(X, X).
We will frequently delete the subscript g.

(2.22) Proposition. Let g be a F-metric as in (2.7). Note that the basis
{a;Y?Xy, -+, a;' X, a;/*Y,,- -+, a,Y?Y,, Z} of b, is g-orthonormal. Rela-
tive to this basis, the Ricci tensor S, is diagonal with matrix

0---0 Ltr(—9?)
where n is given by (2.21).

Proof. Let A;= a;'/?X, and B, = a;'/?Y,. Using the facts that [4,, B,] =
a;'Z and that the covariant derivative for a left-invariant metric is given by
WV, Wy ={{U VW) +{{W,ULV)+ (W, V,U) whenU, V, W € p,,
(see [7, p. 48]), we find that

Va = (2ai)_1Bi A Z, Vp = (2ai)_1Ai N Z,
1 n
Vz=-% 2 aj'4; A B,
j=1
Using R (X,Y) =[V,,Vy| — V|x,y), where R, is the curvature, we can then
compute R, and S, to obtain the proposition.

3. Comparison of the 0-spectra

Throughout §§3-5, g will denote an arbitrary, but fixed, J-metric, with
diagonal entries a;,---,a, (see (2.7)) and T = ['(#,¢) and I = ['(&’, ')
will denote J-groups (see (2.10)). We will say I' and I are p-isospectral
relative to g if the manifolds (I'\ H,, g) and (I''\ H,, g) are p-isospectral.

(3.1) Notation. (i) Recall that the dual lattice of the lattice .# in R?” is the
set of linear functionals T on R*” such that 7(.#) C Z. We will view R*" as a
subspace of §, and thus view elements of the dual lattice as linear functionals
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on ), which vanish on the center of b,. We denote the dual lattices of ¥ and
£’ by« and &', respectively.

(i) Denote by || the volume of a fundamental domain of % relative to the
standard metric on R?",

(iii) Given the metric g, we define as usual a map #: b} = 5, by 7(X) =
(fr, X) and we let p = §~1. We again denote by ¢ , ) the inner product on h*
defined by {0, 7) = (§o,%7) and let || - || denote the associated norm.

In [5], sufficient conditions were given for two elements of % to be 0-
isospectral. The “if” statement of the following theorem is the analogue for .7,

(3.2) Theorem. The groups I'(Z,c) and T'(F’,c) are O-isospectral relative
to g if and only if the following condition holds:

There exists a bijection §: o/ — &' such that
[|187]| = ||7\| forall T €
(equivalently, the associated tori are 0-isospectral).

(3.3) Remarks. (i) The spectrum of the torus (&\ R?*", g,) is given by
{47%)|7|* 7€) with the obvious multiplicities. Thus the parenthetical
statement in the theorem is immediate.

(i) If # is Z-linear, then the associated tori are not only 0O-isospectral but
also isometric. I do not know whether any examples- exist, of 0-isospectral
groups I'(Z, ¢) and I'(:#”, ¢) for which no choice of ¢ in (P0) is Z-linear. One
cannot automatically construct such examples using the known examples of
isospectral, nonisometric tori (e.g. Milnor’s example), since the lattices % and
&£’ are required to satisfy (2.11).

(i11) Theorem 3.2 does not give necessary and sufficient conditions for any
two elements (I'\ H,, g) and (I'"\ H,, g’) of 7 to be 0-isospectral since the
theorem assumes that ¢ = ¢’ and g = g’. However [5] gives evidence suggest-
ing, but not proving, that these conditions (translated into the & setting) may
be necessary for 0-isospectrality.

Proof of Theorem 3.2. We first show that the “if” statement follows
from Theorem 4.1 of [5]. Write ' = I'(%,¢) and T = T(&’,¢). Let M =
(T,\ H,, &) and M’ = (T,\ H,, §’) be elements of & isometric, respectively,
to M=(I'\H,g) and M’ =(I'"\ H,, g) (see Proposition 2.14). We cau-
tion that § need not equal g’ although, viewed as metrics on the simply-
connected manifold H,, § and g’ are isometric. Theorem 4.1 of [5] states that
the following four conditions are sufficient for A and M’ to be O-isospectral.

(a) the 2n + 1,21 + 1) entries of the matrices § and g’ coincide;

®)ry e =r

(c) g and g’ are isometric metrics on H,,;

(d) the associated tori are isometric.

(P0)
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(We have rephrased (c) and (d).) From Proposition 2.14, we see that the
(2n + 1,2n + 1) entry of & is ¢ Thus (a) is equivalent to our condition
¢ = ¢’. By Lemma 2.8, (¢) is equivalent to our condition that the Fmetrics be
identical; i.e. g = g’. Condition (d) is stronger than (P0), but only the weaker
condition that the associated tori be 0-isospectral was used in the proof given
in [5]. This weaker condition is equivalent, by Proposition 2.18, to (P0).
Finally, (b) states that |.%,| = |£/]. This condition is actually a consequence of
(a), (b), and (d), since the volume of the torus associated to M is |Z,||det(g,)|/2.
(Recall that 0O-isospectral manifolds have the same volume, so weakening (d)
does not affect (b).) This completes the proof of sufficiency of (P0).

In order to prove the necessity of (P0), we need to look at the right action of
H,on '\ H,

(3.4) Notation. Let pr (or just p) denote the right action of H, on
L*(T\ H,). For 7 in the dual lattice & of .Z define the character f,: H, > H,
by

(3.5) f:(h) = exp(27/-1 (log h)).
As discussed in [5], f, € LXT'\ H,) and

for all h € H,. Thus Rf, is p-invariant.
Let
Hry = @ Rf..
[X=X-"4
Then
(3-7) LZ(I‘\H,,)=.}£”1~,1€B.}£”F'2,

where ., consists of all irreducible invariant subspaces of infinite dimen-
sion.

B8 Lemma. Let'=I(Z,c)and I'" = I'(Z’,c).

) If | L ="|&"), then H, is g-equivalent to ¥y ,.

(ii) The spectrum of the Laplacian of (' \ H,, g) acting on #r, 1is the
0-spectrum of the associated torus (L\ R*", g,).

Proof. Part (i) of the lemma follows from [5, Lemma 3.7(b)] and the proof
of Theorem 3.3 in [5]. (The proofs there use conditions (a), (b), and (c)
discussed above.) The elementary result (ii) is also contained in the proof of
Theorem 3.3 of [5]. ’

We can now prove the necessity of (P0). Assume (I' \ H,, g) is 0-isospectral
to (I'"\ H,, g). Then the two manifolds have the same volume. But one easily
computes the volume of (I'\ H,, g) to be |.Z|c|det g|'/2. Consequently |£] =
|#’| and by Lemma 3.8(i), we have that #7., is g-equivalent to 5#%.,. Hence,
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the Laplacians restricted to these subspaces are isospectral. By (3.7), the
Laplacians acting on 5; and 5., must also be isospectral, so Lemma
3.8(ii) shows that (P0) holds.

We remark that Lemma 3.8 and Theorem 1.2 give another proof of the
sufficiency of (P0). ‘

4. Comparison of the 1-spectra

Let I' be a J~group. By (3.7) and the discussion in §1, the space of
square-integrable 1-forms is given by

(1, @ bx) @ (o, ® b}).

We denote by Zi(T, g) the spectrum of the Laplacian of (I' \ H,, g) acting on
Hr,®hx i=12

(4.1) Lemma. Suppose I' = I'(Z,¢) and T'' = I'(&’, ¢) satisfy (PO). Then
T is 1-isospectral to T’ relative to g if and only if ZY(T, g) = ZY(T’, g).

Proof. Condition (P0) implies that |.Z}| = |[.£’| since isospectral tori have
the same volume. Hence the lemma follows from Lemma 3.8(i) and Theorem
1.2

(4.2) Lemma [5). Let T = I'(%,c). For 7 in the dual lattice & of £, let

a(7) = 4a’|7|1%,
B.(1)=alr) +4 +[ 4 - 82 Ric(gr)]'”,

where A = 2Ric(Z). Then ZX(T, g) is the collection of numbers X of the form
A= a(r) or A = B () for some T € &,. X occurs in EX(r, g) 2n — 1 times for
each T € & such that X\ = a(r) and once for each T € o such that X\ = B ()
or A= B_(1).

This lemma is the translation of Proposition A.4 of [5] to the F-setting. We
have used Proposition A.4 of [5] to the Fsetting. We have used Proposition
2.22 to convert expressions involving 7 to expressions involving the Ricci
curvature.

Lemmas 4.1 and 4.2 yield:

(4.3) Theorem. Suppose I'(Z,c) and T(Z’,c) are O-isospectral relative to
g. If the bijection 8 in (PO) can be chosen so that

(P1) Ric(#fr) = Ric(fr) forall 1 € o,
then I'(%, ¢) and T'(Z’,c) are 1-isospectral relative to g.

It seems likely that (P1) is a necessary as well as sufficient condition for the
manifolds to be 1-isospectral. We at least have:
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(4.4) Theorem. In addition to the hypotheses of Theorem 4.3, assume that the
entries a,,- - -, a, of g are algebraic and that all elements of & and £’ are linear
combinations with algebraic coefficients of the standard basis vectors of R*".
Then T(&Z,c) is l-isospectral to T(¥’,c) if and only if some choice of 8
satisfying (PO) also satisfies (P1).

Proof. We use the notation of Lemma 4.2. For any choice of 8 in (P0), we
have a(1) = a(fr). We will show that if B(7)= B.(7’) for some 7 € .,
7' €&’, and ¢,¢ € {+, —}, then ||7|| ={|7’|] and Ric(#r) = Ric(fr’). The
theorem will follow.

Assume B,(7) = B,(7’). Set B = 4|7}|>, B’ = 4||7’||%, C = -8 Ric(}r), and
C’ = -8Ric(#r’). The hypotheses of the theorem together with Proposition
2.22 imply that 4, B, B’, C, and C’ are algebraic. Eliminating radicals in the
equation

Bn? + g[ A% + Cn?)Y? = B'n? + ¢[ A2 + C'm?]7?,
we obtain P(w) =0, where P is a nontrivial polynomial with algebraic

coefficients and leading coefficient (B — B’)*. Consequently B = B’ and
hence C = C’, proving the theorem.

5. Comparison of the p-spectra

(5.1) Notation. For g a Jmetric asin (2.7),let 0 < b; < --- < b, denote
the distinct a;’s and let

V.=spang{ X,,Y;:a;=b,}.

Thus R = V, @ --- @V,. For r € (R*")*, we write 7= 1, + - -+ +7, with
#(1) €V,

(5.2) Theorem. Suppose I' = I'(&,c) and T’ = I'(&’,c) are O-isospectral
with respect to g. If the bijection 8 in (PO) can be chosen so that

(P2) W8r) =7l forallresandi=1,--- k,

then T is p-isospectral to T’ relative to g forp = 0,1,2,--+,2n + 1.

The proof is based on the following lemma. We use Notation 3.4,

(5.3) Lemma. Let 1 and o be linear functionals on Y, vanishing on RZ.
Then Rf, is g-equivalent to Rf, if and only if ||7)|| = |lo}|l, 1 < i< k.

Proof. On Rf,, the right action p(4) of & € H, is just multiplication by
exp[27v-1 r(log(h)) (see (3.5)). For ® € Aut(H,,), the action p  ®(4) of Rf,
is multiplication by exp[27y/-1 o ¢ ®,(log(4))]. Thus Rf, is g-equivalent to Rf,
if and only if r=®* for some ® € Aut(H,) satisfying ®*g = g. The
condition ®*g = g implies ®,V, = V,, 1 <i <k, and hence the “only if”
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statement of the lemma follows. Conversely, if ||7j|=|lo)l, 1 <i <k, set
A; = #tr; and A; = fo,. Note that ||4,|| = ||4]}]|. After multiplying by a scalar,
we may assume ||4,]| = ||4) = 1. Since V, is the b; > eigenspace of 7 (see
Notation 2.19), we may complete 4; and A; to ordered orthonormal bases %,
and %/, respectively, of V; such that 7|, has matrix

0 bt
Bt 0 0
0 0 bt

Byt 0
relative to both %, and %,. It follows from (2.20) that the linear map ¢:
b, — b, which maps Z to Z and elements of %, to the corresponding
elements of &/, 1 < i < k, is the differential of an automorphism @ satisfying
®*g = g and r = ®¥¢. The lemma is proved.

Theorem 5.2 follows from Lemma 5.3, Lemma 3.8(1) (recall that (P0) implies
|| = |Z£’]), and Theorem 1.2.

We conclude this section by comparing conditions (P1) and (P2).

(5.4) Propeosition. Suppose 8 satisfies (P0). Then

(1) (P2) implies (P1).

(ii) If 8 is Z-linear, then (P2) is equivalent to (P1).

Proof. For T € (R2")*,

k
Ric(fr) = -3 X 67771
i=1

by Proposition 2.22 and Notation 5.1. This proves (1), and (ii) is easily verified.

(5.5) Remark. It seems likely that if I'(.#, ¢) and I'(#’, ¢) are both 0- and
1-isospectral relative to g, then they are also p-isospectral for all p. To prove
this conjecture, one would have to first prove that (P1) is a necessary condition
for the groups to be 1-isospectral even without the additional hypotheses of
Theorem 4.4, and that (P2) and (P1) are equivalent even when & is not
Z-linear.

6. Examples
Let g be a fixed Fmetric with diagonal entries a;,---,a, and let I' =
T'(&,¢) and I’ = I'(Z’, ¢) be rectilinear Fgroups as in Example 2.12. Thus
FL=rZ" X sZ" and £’ =r'Z" X s’L" for some r,s,r’,s’ € (R*)", where
we write rZ" for nZ X - -+ Xr,Z.
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(6.1) Theorem. " Let g, I, and I'' be as above. Then I'" is O-isospectral to T if
and only if the 2n-tuple

(a(rf)s o an(m)s an(si)’s- -, an(s0))

; ; 2 2 2 1
is a permutation of (a;re, -+, a,r;, a;si, -, a,8,).

(6.2) Theorem. In the above notation, assume that a,r;, s, r{, and s] are
algebraic, 1 < i < n, and assume 1" is O-isospectral to I'. Let by < --- < b,

be the distinct a;’s and set
Fi={je{l,---,n}:a;=b,}.

Then the following are equivalent:

(a) I'" is 1-isospectral to T.

(b) I’ is p-isospectral to T for all p.

(c) The permutation in Theorem 6.1 can be chosen so that entries a j(rj’)z and
aj(sj’.)2 with j € ¢, are carried to entries with indices alsoin £,,1 < i< k.

We will prove both theorems simultaneously. Let % = {a;,---,a,,
Bi,- -+, B,} denote the basis of (R*")* dual to B, = { X;,---, X, Y1,---,Y,}.
Then the dual lattice &7 of & has basis

‘@:s = {ai/ri’ .B,'/S,': l1gixg n}.
For 7 € (R*")* expressed in terms of the basis #F, we have ||7||? ='rgg’r,
where as usual g, is the upper left 27 X 2n submatrix of g, so

e/l = (@), 1B/s = (a,52)”
Hence, as in Notation 5.1,
Bx NV, ={a,/r, B/s;jEL ).

Note that the existence of a permutation as in Theorem 6.1 is equivalent to
the existence of a Z-linear map #: &/’ — &/ which satisfies (PO) and which
maps &, to #* . The map @ also satisfies condition (P2) if and only if the
permutation satisfies the condition stated in Theorem 6.2(c). Thus in view of
Theorems 3.2, 4.4, and 5.2, and Proposition 5.4, Theorems 6.1 and 6.2 will
follow from the following:

Claim. If there exists a map @ satisfying (P0), then there exists a Z-linear
map # which satisfies (P0) and which maps %Y to % .. Moreover if é
satisfies (P1), then & can be chosen so that it also satisfies (P1).

To prove the claim, let

d; = min{||7|: 7 €} = min{||7||": 7" € &’ }.
(The second equality follows from the existence of f.) Since BX. and B, are

orthogonal lattice bases of &/ and 7/, all the elements o,,- - -, 0, of norm d,;
in & and o¢{,---,0; of norm d; in /' belong to #¥ and to B},
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respectively. Let 4, = span;{o,,- -, 0,}. Define § to be linear on 4, and to
agree with § on ¢,,- - -, 0,. Since the standard basis & of Y, diagonalizes the
Ricci tensor and since the elements of #* and %, are multiplies of the
elements of #§ C #*, the map § on A, satisfies condition (P1) if § satisfies
(P1).
Next let
d, =min{j|7||:r €/~ 4,}.

By making finitely many changes in § (without affecting whether § satisfies
(P1)), we may assume that §(r) = 6(r) whenever 7 € A, and ||7]| € d,. Thus
if r €.9/— A, and ||7|| = d,, then 8(r) € o’ — 8(4,). Note moreover that if
7 €/ — A, and ||7|| = d,, then 7 € B, since A4, is spanned by elements of
the orthogonal basis #*.. For the same reason, 6(r) e %% . Thus we may
extend @ to a Z-linear map on the sublattice 4, of o/ spanned by 4, and all
elements of Z; of norm d,. If § satisfies (P1), then 8 satisfies (P1) on 4,.

Continuing this construction for at most 2a steps, we obtain the desired
map 4.

This proves the claim and, as noted above, Theorems 6.1 and 6.2 follow.

We remark that Theorem 6.1 is just the statement that any two isospectral
flat rectilinear tori are isometric.

(6.3) Examples. The following chart gives four pairs of 0-isospectral
Heisenberg manifolds. The manifolds (I'\ H,, g) and (I''\ H,, g) are speci-
fied as follows: In the column labeled g, we give the diagonal entries a,,- - -, a,
of the Fmetric g. We have I' = I'(#,1) and I'' = I'(¥’,1), where £= rZ”
X sZ"and &Z’ = r'Z" X s’Z". In the columns labeled % and #’, we specify
the 2n-tuples (ry,---,7,; $3,°-+,8,) and (r{,-+-, ry; s1,"-,s,), respectively.
Thus (T'\ H,, g) is completely specified by the entries in the columns g and
&, and (I’ \ H,, g) is specified by the entries in columns g and #”. In each
case, Theorem 6.1 implies that the manifolds are O-isospectral. We use Theo-
rem 6.2 to test whether they are l-isospéctral (and consequently p-isospectral
for all p). Finally the condition given at the end of Example 2.12 can be used
to check whether the fundamental groups I' and I'’ are isomorphic.

fundamental
n g Z &z’ l-isospectral groups
isomorphic
21 (1,9 “42;1,2) 4,1/2;4,2) no no
21 (1,01 2,1;2,1) 2,2;1,1) yes no
2| (1,4 42;1,1/2) 1,2; 1,2) no yes
3((1,1,1) 1(24,3;6,510) | (3,2,5; 4,10,6) yes yes
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In the first three examples, the information in the last two columns guaran-
tees that (I' \ H,, g) is not isometric to (I'"\ H,, g). In the fourth example,
one can check directly that there is no automorphism & of H, such that
®*g = g and ©(T') = I'” and hence that the manifolds are nonisometric (see
Proposition 2.16).

Remarks. (i) In [3], the length spectra, i.e., the collection of lengths of
closed geodesics, are compared for pairs of manifolds satisfying the condition
(P0) of Theorem 3.2. If one ignores multiplicities, the pairs of manifolds are
length-isospectral. The same conclusion holds if one defines the multiplicity of
an element of the length spectrum to be the total number of closed geodesics of
that length. (All multiplicities are then infinite.) However in many cases,
including each of the pairs of manifolds in the chart above, the manifolds can
be distinguished by the number of free homotopy classes of loops containing a
geodesic of specified length. This gives an alternative proof that the manifolds
in the fourth example above are not isometric.

(i) Generalizing the notion of a rectilinear J~group, one many study
F-groups for which ¥= @* #n ¥V, (Notation 5.1). Set &, =£n V,. Note
that V; + RZ is an ideal in b, isomorphic to a Heisenberg algebra of lower
dimension. Setting M; = exp(V, + RZ), we have that M, is a simply-connected
normal subgroup of H,. Moreover, M nT =T(%#,c), a Fgroup in the
Heisenberg group M,. The Fmetric g induces a Fmetric g; on M, given by

0
b;1d :

8i 0

0---0 1
Thus the submanifold ((M; N T)\ M,, g;) is a Riemannian Heisenberg mani-
fold of the type . We denote it by M,(%Z, g). Moreover relative to the
obvious orthonormal basis of ¥, +RZ, the Ricci tensor of M,(Z, g) is given
by

-1b7%1d :
O »
0---0  imb;?

where dimV, = 2m,. Thus we will call M,(%, g) a submanifold of almost
constant Ricci curvature.

Now suppose (I'\ H,, g) and (I'"\ H,, g) are O-isospectral manifolds as in
Theorem 3.2 and that #= @* :#NV,and £’ = @) £’ NV, In case
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k=1 (ie. a, = --- = a,), the two manifolds themselves have almost con-
stant Ricci curvature. Condition (P2) is trivially satisfied and hence they are p-
isospectral for all p. If ¥ > 1 and if M,(%, g) is O-isospectral (and hence
p-isospectral) to M, (%', g) for i = 1,---, k, then it is an easy consequence of
Theorems 3:2 and 5.2 that (I'\ H,, g) and (I''\ H,, g) are p-isospectral for all
p. As a partial converse, if a Z-linear choice of # satisfies (P0O) and (P1) (and so
by Proposition 5.4, T' is p-isospectral to I'" for all p), then M, (&, g) is
isospectral to M,(¥’,8),1 < i < k.

- (iii)) Theorem 4.3 as well as (il) above suggest ways of distinguishing
geometrically the examples of Heisenberg manifolds which are p-isospectral
for all p from examples which are only 0-isospectral. However we caution that
for simply-connected Heisenberg manifolds (H,, g), the Ricci tensor is a
complete isometry invariant. Hence our conditions involving only the Ricci
tensor and the lattice vectors should not be expected to generalize immediately
to other manifolds.
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